
Optical nonlinearity of ionic crystals and its increasing absorption optical bistability

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 6695

(http://iopscience.iop.org/0953-8984/8/36/020)

Download details:

IP Address: 171.66.16.206

The article was downloaded on 13/05/2010 at 18:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/36
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 6695–6703. Printed in the UK

Optical nonlinearity of ionic crystals and its increasing
absorption optical bistability

Bao-Hua Wei†‡§, Fa Ou†, K W Yu‡ and Tin-Wan Wu†
† Department of Applied Physics, South China University of Technology, Guangzhou 510641,
People’s Republic of China
† Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong
Kong
§ International Centre for Material Physics, Shengyang 110015, People’s Republic of China

Received 29 March 1996, in final form 28 May 1996

Abstract. This paper presents an approach to the intracavity interaction of electromagnetic
waves with anharmonic lattice vibrations of ionic crystals. The nonlinear lattice dynamics and
an expression for the nonlinear polarization are derived in terms of optical phonon modes. In
the rotating-wave approximation the total coherent Hamiltonian of the system is derived. Using
the corresponding equation of steady states, the increasing absorption optical bistability (IAOB),
as a nonlinear effect, is demonstrated. The results show that optical nonlinearities due to the
interaction of photons with various elementary excitations of bosonic type such as phonons and
excitons may be the origin of IAOB, which is consistent with our previous works.

1. Introduction

The study of optical bistability and multistability in optical nonlinear systems has been
a subject of interest over the last two decades. In the past, most of the optical systems
concerned were based on the light–matter interaction and involved using the two-level
atomic model or other atomic models which possess saturated absorptive characteristics
[1–11]. In recent years, a new kind of optical bistability—increasing absorption optical
bistability (IAOB)—has aroused great interest in scientists [12–15]. Since the dynamical
behaviour of IAOB is substantially different from saturated absorption optical bistability
(SAOB), we must update our knowledge to treat this new subject. In recent years, we have
proposed a dynamical model for the IAOB, which is just like the Maxwell–Bloch equations
for saturated absorptive nonlinearity including the SAOB [12–14]. On the basis of this IAOB
model, we have suggested that there exist some kinds of elementary excitation, which obey
the boson statistics, in optical nonlinear systems; IAOB will arise from the interaction of
photons with these boson elementary excitations including the electron–hole pair exciton in
semiconductors.

This paper attempts to provide an example to justify the use of the Hamiltonian of
the IAOB model mentioned above, which is obtained in a phenomenological way. It will
be demonstrated that in addition to the exciton in semiconductors [16], the phonon of
anharmonic lattice vibration in ionic crystals may play the role of the boson elementary
excitation with which the light interacts. The layout of the paper is follows: section 2
presents the Hamiltonian of the ionic crystal; the nonlinear polarization of the crystal will
be discussed in section 3; section 4 gives the Hamiltonian of the ionic crystal coupled with
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an electromagnetic field; and the semiclassical equations of motion and the IAOB will be
given in section 5; finally a concise discussion is presented in section 6.

2. The Hamiltonian of the crystal

Using the normal coordinateQ and its conjugate momentumP , the Hamiltonian of
anharmonic motion of the crystal can be written as [17]

Hcrystal = 1

2

∑
α

(P 2
α + ω2

αQ2
α) + 1

2

∑
αβγ

µαβγ (PαPβQγ + (QαPβPγ )

+ 1

3

∑
αβγ

ηαβγ QαQβQγ + 1

2

∑
αβγ δ

λαβγ δ(PαPβQγ Qδ + QδQγ PβPα)

+ 1

4

∑
αβγ δ

εαβγ δQαQβQγ Qδ (1)

where we retain only the nonlinear terms of the first order (µs andηs) and the second order
(λs andεs) which will be adopted in later discussions. In order to ensure the hermiticity
of the Hamiltonian after the quantization, every product ofP andQ is added to its cyclic
permutation in the round brackets of the second and fourth summations in equation (1).

The quantized normal coordinates and momenta obey the following commutation
relations:

[Qα, Pβ ] = i h̄δαβ [Qα, Qβ ] = [Pα, Pβ ] = 0. (2)

The annihilation and creation operators of the phonon mode,bα andb+
α , are introduced by

the following transformation:

Qα =
(

h̄

2ωα

)1/2

(bα + b+
α ) Pα = 1

i

(
h̄ωα

2

)1/2

(bα − b+
α ) (3)

and they satisfy the boson commutation relations

[bα, b+
β ] = δαβ [bα, bβ ] = [b+

α , b+
β ] = 0. (4)

Inside the Hamiltonian of equation (1), the linear terms represent the independent
motion of the different modes, while the nonlinear terms represent the interaction between
those modes. The excitation of the phonon mode may be either coherent (for example,
the mode excited by the coherent electromagnetic field) or incoherent (for example, the
thermal excitation); therefore, it is necessary to divide the HamiltonianHcrystal into coherent
(reversible) and incoherent (irreversible) parts, i.e.,

Hcrystal = Hcoh
crystal + Hincoh

crystal . (5)

The irreversible part plays the role of the reservoir of coherent phonon modes. Hereafter, for
the sake of convenience, we shall consider only one kind of optical phonon mode coupled
with a single photon mode, and assume that the frequency of the optical phonon mode (ωb),
which is coherently excited, is nearest to that of the cavity mode of the photon (ωa), so that
Hcoh

crystal can be written as

Hcoh
crystal = 1

2
(P 2 + ω2

bQ
2) + 1

2
µ(P 2Q + QP 2) + 1

2
λ(P 2Q2 + Q2P 2)

+ 1

3
ηQ3 + 1

4
εQ4. (6)
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Substitutingb andb+ from equation (3) forP andQ, and then making the rotating-wave
approximation (i.e., neglecting the products in which the numbers of appearances ofb and
of b+ are unequal, e.g.,bb+b, b+2bb+), we can get the further simplifiedHcoh

crystal :

Hcoh
crystal = h̄ωbb

+b + h̄g′′
b (b

+2b2 + b2b+2) (7)

whereg′′
b = (h̄/4)(λ+3ε/4ω2

b) is the phonon–phonon coupling constant (the double primes
indicate that the second-order nonlinearity is considered). As a result of the rotating-wave
approximation, all of the first-order nonlinear terms are eliminated. The same will be found
below for the Hamiltonian of the photon–phonon interaction.

3. Nonlinear polarization of the ionic crystal

The ionic crystal is directly and strongly coupled with the electromagnetic field through its
macroscopic polarization, which is defined by

P =
∑
l,r

qr (Rl + ulr ) l = 1, 2, . . . , N r = 1, 2, . . . , n (8)

whereRl stands for the lattice coordinate vector of thelth cell and we assume that every
unit cell contains only one pair of positive and negative ions (i.e.n = 2) and the charge of
ions isqr = ±e, so that

P =
∑

l

e(ul+ − ul−) = e
∑

l

ul = e
∑

l

uslls (9)

whereul is the vector of the relative displacement between the two ions in the unit cell and
ls is the unit vector of the cartesian coordinates. The component of the polarization vector
can be expressed in terms of the optical phonon modes as follows:

Ps =
∑

α

ξs,αQα +
∑
αβ

ξ ′
s,αβQαQβ +

∑
αβγ

ξ ′′
s,αβγ QαQβQγ + · · · (10)

where

ξs,α = e
∑

l

Asl,α ξ ′
s,αβ = e

2

∑
l

Bsl,αβ ξ ′′
s,αβγ = e

3

∑
l

Csl,αβγ (11)

andA, B andC are transformation coefficients, which give the relations between the normal-
mode (coordinate) and cartesian coordinates as

ui =
∑

α

AiαQα + 1

2

∑
αβ

BiαβQαQβ + 1

3

∑
αβγ

Ciαβγ QαQβQγ + · · · . (12)

So expression (10) can be considered as a normal-mode transformation of the macroscopic
polarization, which may be induced by the electromagnetic field. On the other hand, it tells
us that the polarization, in general, is nonlinear in its normal modes; the coherently induced
polarizationPs is simply written as

Ps = ξsQ + ξ ′
sQ

2 + ξ ′′
s Q3. (13)

4. The total Hamiltonian of the ionic crystal coupled with an electromagnetic field

It is further assumed that the wavelength of the incident electromagnetic field is much
greater than the thickness of the crystal film, so that the long-wave approximation may be
made. The electric fieldE in the film (cavity) will be approximately homogeneous, and the
electromagnetic field is polarized in the direction parallel to the surface of the film. Then,
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the coherent Hamiltonian of photon–phonon interaction in the dipole approximation can be
expressed in the following form:

Hcoh
photon−phonon = −P · E = −(ξQ + ξ ′Q2 + ξ ′′Q3)E (14)

where the direction of theE-vector coincides with one of the coordinate axes and the
component index ‘s’ is omitted. In equation (14),

E = 1

i

(
h̄ωa

2

)1/2

(a − a+). (15)

and

Q =
(

h̄

2ωb

)1/2

(b + b+). (16)

As we stated above, the frequency of the excited phononωb is very near to that of the
photonωa, soHcoh

photon−phonon can also be treated by using the rotating-wave approximation
(RWA). After some algebraic calculation, we obtain

Hcoh
photon−phonon = i h̄(gabab+ + g′′

abab+2b) + HC (17)

wheregab and g′′
ab are the photon–phonon coupling constant (double primes stand for the

second-order coupling), which are given by

gab = 1

2

√
ωa/ωb(ξ + ξ ′′(3h̄/2ωb))

g′′
ab = 3h̄

4
ξ ′′ω1/2

a /ω
3/2
b .

(18)

Finally, combining equation (17) with equation (7) and taking the driving term of the
incident electromagnetic field into account, we obtain the total coherent Hamiltonian of the
system as

Hcoh
total = h̄1aa

+a + h̄1bb
+b + i h̄(gabab+ + g′′

abab+2b2 − i g′′
bb

+2b2 + ga+f ) + HC (19)

where f and ω are the amplitude and the frequency of the incident light, respectively,
1a = ωa − ω and 1b = ωb − ω are the detuning of the photon and phonon, respect-
ively, andg is the relevant coupling constant for the coupling of the incident light with the
system [16].

The incoherent part of the Hamiltonian—the interaction between the photon and the
optical phonon with the respective reservoirs—will simply be written as

Hincoh = a+0a + b+0b + HC (20)

where0a and0b are the reservoir operators. Applying standard techniques of the quantum
theory of damping [18] we find the following master equation for the reduced density
operator of the system:

∂ρ

∂t
= 1

i h̄
[Hcoh

total, ρ] +
2∑

i=1

γi(2eiρe+
i − e+

i eiρ − ρe+
i ei) +

2∑
i=1

2γin
th
i [[ei, ρ], e+

i ] (21)

where (e1, e
+
1 ) = (a, a+) and (e2, e

+
2 ) = (b, b+). Also, γ1 (=γa) and γ2 (=γb) are the

damping rates of the photon and phonon, respectively, andnth
1 (nth

2 ) represents the mean
thermal photon (phonon) number of the reservoir.
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5. Semiclassical equations of motion and IAOB

Let

〈a〉 = α exp(iωt) = |α| exp(i(ωt + φa))

〈b〉 = β exp(iωt) = |β| exp(i(ωt + φb))
(22)

where φa (φb) is the phase of the photon (phonon) relative to the incident light. The
semiclassical equation of motion, corresponding to equations (19) and (21), should be

α̇ = −(γa + i1a)α + gf − gabβ − g′′
abβ|β|2

β̇ = −(γb + i1b)β − 4g′′
bβ|β|2 + gabα + g′′

ab(2α|β|2 − α∗β2)
(23)

together with the complex conjugate equations.
Set α̇ = β̇ = 0 for the steady state, and for simplicity let1a = 1b = 0,

which corresponds to the resonant situation; we can now obtain the stationary solution
of equation (23).

Define

n = |β|2 x = |α|2 y = g2f 2/γ 2
a (24)

wherex and y stand for the output cavity-field intensity and input driving-field intensity,
respectively, andn is the number of coherent phonons (excitation intensity).

From equation (23) we have

gf = γaα + gab(1 + v1n)β (25)

γbn = gab(1 + v1n)
√

xn cos(φa − φb) (26)

4g′′
bn

2 = gab(1 + 3v1n)
√

xn sin(φa − φb) (27)

after a simple calculation, we can obtain the outputx versus incidenty characteristics
of steady states in the parametric form (the number of coherent phononsn is taken as a
controlling parametric quantity)

x = k1n

(1 + v1n)2

(
1 + v2

2n
2(1 + v1n)2

(1 + 3v1n)2

)
(28)

y − x = k2(1 + v1n)2n + 2
√

k1k2n. (29)

In the above equations,

k1 = γ 2
b /g2

ab k2 = g2
ab/γ

2
a (30)

v1 = g′′
ab/gab v2 = 4g′′

b/γb. (31)

Equations (28) and (29) are similar to the equations (30) and (31) in reference [14],
which could lead to an IAOB, as was expected. We would like to callx versusn in
equation (28) the ‘characteristic curve’ and(y −x) versusn in equation (29) the ‘efficiency
curve’. From equation (27) we can see that the interaction between phonons (presented as
g′′

bn
2 in the left-hand side of equation (27)), which is neglected in reference [14], will cause

a phase detuning between the photon (α) and phonon (β) even in the resonant situations.
And it will also wash out the characteristics of the IAOB, which can be seen clearly from
equations (28) and (29).

When the coupling constant associated with the nonlinear photon–phonon interaction
v1 is considerably greater than that of the phonon–phonon interactionv2, the steady-state
equations (28) and (29) give the typicalx versusy curves of IAOB on choosing suitable
parameters. Our numerical calculations are demonstrated in figures 1 to 3.
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Figure 1. (a) The steady-state outputx versusn ‘characteristic curve’ and the ‘effective curve’
with the parametersk1 = 60, k2 = 0.001, v1 = 1, v2 = 0.05 for different inputsy. (b) The
outputx versus inputy curve determined from (a).

Figure 1 shows the steady-state outputx versus n ‘characteristic curve’ and the
‘efficiency curve’ for the parametersk1 = 60, k2 = 0.001, v1 = 1, and v2 = 0.05. The



Optical nonlinearity of ionic crystals 6701

Figure 2. The output x versus inputy characteristics with different values ofk1 =
100, 70, 40, 20, 10; the other parameters are the same as in figure 1.

characteristics of the IAOB are obviously illustrated in the figure. To study the effect of the
parameters, the output–incident characteristics for different values ofk1 andv2 are plotted
in figure 2 and figure 3, from which we can see that if the coupling constants and the
damping rate of the photons keep constant, the behaviour of the IAOB will become more
obvious with the increasing of the damping rate of the phonons (wherek1 = γ 2

b /g2
ab). But

the phonon–phonon interaction will reduce the behaviour of the IAOB. As we can see from
figure 3, with the increase ofv2 (standing for the strength of the phonon interaction), the
IAOB will be weakened; whenv2 is more than 0.5, IAOB is hardly found. From our
numerical calculation we also found that if the damping rate of photons is very small, no
IAOB will occur, because the ‘characteristic curve’ is far from the ‘IAOB characteristic
curve’ presented in reference [14].

6. Discussion

The coupled equations of motion (equation (23)) are the main results of our model for IAOB.
It is interesting that our fundamental results, i.e.,Hcoh

total , expressed by equation (19), are
completely the same as the coherent part of the Hamiltonian of the photon–exciton coupled
system (in the low-density case), derived in the paper about the theory of excitonic optical
bistability by Steyn-Ross and Gardiner [16]. This fact shows that the optical nonlinearities
due to the interaction of photons with various elementary excitations of bosonic type such
as phonons and excitons may be the origin of the IAOB. Therefore, both this paper and
Steyn-Ross and Gardiners work [16], in some sense, support the Hamiltonian of the IAOB
model obtained in a phenomenological way in reference [14].

However, the IAOB presented here would hardly be expected from the work of Steyn-
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Figure 3. The output x versus inputy characteristics with different values ofv2 =
0.4, 0.3, 0.2, 0.1, 0; the other parameters are the same as in figure 1.

Ross and Gardiner [16]. In their analysis of the steady-state behaviour they neglected the
photon–exciton coupling in reality and emphasized the exciton–exciton interaction, so they
believed that ‘the bistability depends solely on exciton–exciton interaction’, which could be
seen clearly in the third part of their paper with regard to the effect of the parameters. This
is just the opposite of our present result. In our opinion, the origin of the IAOB lies in
the nonlinear interaction between the photon and the elementary excitations, including the
exciton; the phonon–phonon coupling is not the cause of the IAOB, but is what disturbs or
weakens the IAOB, as can be seen clearly from figure 3 and the corresponding discussion
in the text.
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